A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice
نویسندگان
چکیده
The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis.
منابع مشابه
Correction: A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice
[This corrects the article DOI: 10.1371/journal.pone.0073996.].
متن کاملGDF9 is Transiently Expressed in Oocytes before Follicle Formation in the Human Fetal Ovary and is Regulated by a Novel NOBOX Transcript
During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFβ family, including activin βA: these all show changing pa...
متن کاملLicensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells
Mammalian oocytes and spermatozoa derive from fetal cells shared by the sexes. These primordial germ cells (PGCs) migrate to the developing somatic gonad, giving rise to oocytes or spermatozoa. These opposing sexual fates are determined not by the PGCs’ own sex chromosome constitution (XX or XY), but by the sexual identity of the fetal gonad that they enter. We asked whether PGCs undergo a deve...
متن کاملRe: licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells.
Mammalian oocytes and spermatozoa derive from fetal cells shared by the sexes. These primordial germ cells (PGCs) migrate to the developing somatic gonad, giving rise to oocytes or spermatozoa. These opposing sexual fates are determined not by the PGCs' own sex chromosome constitution (XX or XY), but by the sexual identity of the fetal gonad that they enter. We asked whether PGCs undergo a deve...
متن کاملAbsence of mDazl produces a final block on germ cell development at meiosis.
The autosomal gene DAZL is a member of a family of genes (DAZL, DAZ, BOULE), all of which contain a consensus RNA binding domain and are expressed in germ cells. Adult male and female mice null for Dazl lack gametes. In order to define more precisely the developmental stages in germ cells that require Dazl expression, the patterns of germ cell loss in immature male and female wild-type (+/+, WT...
متن کامل